Abstract

Review Article

NAD⁺ Biology in Ageing and Chronic Disease: Mechanisms and Evidence across Skin, Fertility, Osteoarthritis, Hearing and Vision Loss, Gut Health, Cardiovascular–Hepatic Metabolism, Neurological Disorders, and Muscle

Rizwan Uppal, Umar Saeed* and Muhammad Rehan Uppal

Published: 26 January, 2026 | Volume 10 - Issue 1 | Pages: 001-009

Background: Nicotinamide adenine dinucleotide (NAD⁺) is a pivotal coenzyme and signaling substrate that integrates redox balance with mitochondrial energy production, DNA repair, epigenetic control, and cellular stress resilience. Declines in NAD⁺ availability—frequently observed with ageing, chronic inflammation, and metabolic stress—have intensified interest in NAD⁺ restoration as a potential strategy to influence disease biology across multiple organ systems.
Objective: This narrative review summarizes contemporary mechanistic and translational evidence on NAD⁺ biosynthesis and turnover, highlighting the de novo kynurenine pathway and vitamin B3–dependent salvage routes (nicotinic acid, nicotinamide, nicotinamide riboside, and nicotinamide mononucleotide). We also examine how major NAD⁺ consumers and sensors, sirtuins, poly(ADP-ribose) polymerases (PARPs), and CD38 link NAD⁺ status to inflammation, oxidative stress, and tissue dysfunction in diverse clinical contexts.
Methods: Peer-reviewed literature on NAD⁺ metabolism, NAD⁺-dependent signaling, and preclinical/clinical studies of NAD⁺ precursors was evaluated and organized into: (i) core biochemical functions in cellular energetics, (ii) NAD⁺ consumption in genome maintenance and immune signaling, and (iii) organ-focused evidence relevant to skin disorders, infertility and reproductive health, osteoarthritis, hearing loss, vision decline, gut barrier dysfunction, cardiovascular and renal metabolism, hepatic steatosis, neurological diseases, and skeletal muscle health.
Results: NAD⁺ supports glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation, while acting as an essential substrate for PARP-driven DNA repair and sirtuin-mediated deacylation programs that shape mitochondrial fitness, inflammatory tone, and metabolic flexibility. Across experimental models, impaired NAD⁺ homeostasis repeatedly associates with mitochondrial dysfunction, heightened oxidative injury, and dysregulated immune–barrier responses, features shared by intestinal inflammation, neurodegeneration and ischemic injury, cardiometabolic disease, kidney injury, and fatty liver disease. Supplementation with NAD⁺ precursors (notably NR and NMN) reliably elevates NAD⁺ in preclinical systems and increases circulating NAD⁺ metabolites in humans, with early signals of pathway engagement; however, clinical outcomes remain heterogeneous across populations, dosing regimens, and endpoints. Evidence for intravenous NAD⁺ “drip” therapy is comparatively limited and insufficiently standardized, with constraints related to tolerability, dose consistency, and cost, underscoring the need for controlled trials.
Conclusion: NAD⁺ occupies a central position at the interface of energy metabolism, genome integrity, and immunometabolic signaling, providing a coherent framework for understanding how cellular stress can propagate multisystem dysfunction. Although NAD⁺-boosting strategies are biologically plausible and mechanistically supported, definitive clinical benefit across skin, fertility, osteoarthritis, sensory decline, gut disorders, cardiovascular and hepatic disease, neurological conditions, and muscle health will require well-designed human studies with standardized biomarkers, safety surveillance, and clinically meaningful endpoints.

Read Full Article HTML DOI: 10.29328/journal.acem.1001032 Cite this Article Read Full Article PDF

Keywords:

NAD⁺; Nicotinamide riboside; Nicotinamide mononucleotide; Sirtuins; PARP; CD38; Inflammation; Oxidative stress; Hepatic steatosis; Neurodegeneration; Muscle health

References

  1. Bogan KL, Brenner C. Nicotinamide riboside, a new vitamin B3, and the emerging therapeutic potential of NAD+. Annu Rev Nutr. 2008;28:115–130. Available from: https://doi.org/10.1124/jpet.107.120758
  2. Young SN. Acute tryptophan depletion in humans: a review of theoretical, practical and ethical aspects. J Psychiatry Neurosci. 2013;38(5):294–305. Available from: https://doi.org/10.1503/jpn.120209
  3. Richard DM, Dawes MA, Mathias CW, Acheson A, Hill-Kapturczak N, Dougherty DM. L-Tryptophan: basic metabolic functions, behavioral research, and therapeutic indications. Int J Tryptophan Res. 2009;2:45–60. Available from: https://doi.org/10.4137/ijtr.s2129
  4. Trumbo P, Schlicker S, Yates AA, Institute of Medicine (US) Panel on Macronutrients. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington (DC): National Academies Press; 2005.
  5. S. Department of Agriculture, Agricultural Research Service. FoodData Central (food composition database). Beltsville (MD): USDA; 2019–2026. Available from: https://fdc.nal.usda.gov/
  6. Gomes AP, Price NL, Ling AJY, Moslehi JJ, Montgomery MK, Rajman L,  et al. Declining NAD+ induces a pseudohypoxic state, disrupting nuclear-mitochondrial communication during aging. Cell. 2013;155(7):1624–1638. Available from: https://doi.org/10.1016/j.cell.2013.11.037
  7. Camacho-Pereira J, Tarragó MG, Chini CCS, Nin V, Escande C, Warner GM, et al. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab. 2016;23(6):1127–1139. Available from: https://doi.org/10.1016/j.cmet.2016.05.006
  8. Grant R, Berg J, Mestayer R, Yoon U, Choe Y, Cheon BK, et al. A pilot study of nicotinamide adenine dinucleotide (NADH) in the treatment of chronic fatigue syndrome. Front Aging Neurosci. 2019;11:147. Available from: https://doi.org/10.3389/fnagi.2019.00147
  9. Houtkooper RH, Cantó C, Wanders RJA, Auwerx J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev. 2010;31(2):194–223. Available from: https://doi.org/10.1210/er.2009-0026
  10. Trammell SAJ, Schmidt MS, Weidemann BJ, Redpath P, Jaksch F, Dellinger RW,  et al. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat Commun. 2016;7:12948. Available from: https://doi.org/10.1038/ncomms12948
  11. Hirst J. Mitochondrial complex I. Annu Rev Biochem. 2013;82:551–575. Available from: https://doi.org/10.1146/annurev-biochem-070511-103700
  12. Berg JM, Tymoczko JL, Gatto GJ, Stryer L. Biochemistry. 9th ed. New York: W.H. Freeman; 2019. Available from: https://www.scirp.org/(S(ny23rubfvg45z345vbrepxrl))/reference/referencespapers?referenceid=3401883
  13. D’Amours D, Desnoyers S, D’Silva I, Poirier GG. Poly(ADP-ribose )ylation reactions in the regulation of nuclear functions. Biochem J. 1999;342(Pt 2):249–268. Available from: https://pubmed.ncbi.nlm.nih.gov/10455009/
  14. Chini CCS, Tarragó MG, Chini EN. de Oliveira GC, van Schooten W. The pharmacology of CD38/NADase: an emerging target in cancer and diseases of aging. Trends Pharmacol Sci. 2018;39(4):424–436. Available from: https://doi.org/10.1016/j.tips.2018.02.001
  15. Zakhari S. Overview: How is alcohol metabolized by the body? Alcohol Res Health. 2006;29(4):245–254. Available from: https://pubmed.ncbi.nlm.nih.gov/17718403/
  16. Cantó C, Menzies KJ, Auwerx J. NAD+ metabolism and the control of energy homeostasis: a balancing act. Cell Metab. 2015;22(1):31–53. Available from: https://doi.org/10.1016/j.cmet.2015.05.023
  17. Yoshino J, Baur JA, Imai SI. NAD+Intermediates: The Biology and Therapeutic Potential of NMN and NR. Cell Metab. 2018;27(3):513-528. Available from: https://doi.org/10.1016/j.cmet.2017.11.002
  18. Zakhari S, Li TK. Determinants of alcohol use and abuse: impact of quantity and frequency patterns on liver disease. Hepatology. 2007;46(6):2032–2039. Available from: https://doi.org/10.1002/hep.22010
  19. Berthoud VM, Beyer EC. Oxidative stress, lens gap junctions, and cataracts. Antioxid Redox Signal. 2009;11(2):339–353. Available from: https://doi.org/10.1089/ars.2008.2119
  20. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180–183. Available from: https://doi.org/10.1016/j.redox.2015.01.002
  21. Truscott RJW. Age-related nuclear cataract—oxidation is the key. Exp Eye Res. 2005;80(5):709–725. Available from: https://doi.org/10.1016/j.exer.2004.12.007
  22. Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2(2):e106–e116. Available from:  https://doi.org/10.1016/s2214-109x(13)70145-1
  23. Williams PA, Harder JM, Foxworth NE, Cochran KE, Philip VM, Porciatti V, et al. Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science. 2017;355(6326):756–760. Available from: https://doi.org/10.1126/science.aal0092
  24. Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol. 2001;119(10):1417–1436. Available from: https://doi.org/10.1001/archopht.119.10.1417
  25. Novak EA, Liu H, Chen J, et al. Nicotinamide riboside protects against experimental colitis and improves gut barrier function. Front Immunol. 2023;14.
  26. Peluso I, Villano DV. NAD metabolism links gut microbiota to host inflammation and barrier function. NPJ Biofilms Microbiomes. 2023;9.
  27. Niño-Narvión V, Rojo-López MI, Martinez-Santos P, Rossell J, Ruiz-Alcaraz AJ, Alonso N, et al. NAD+ precursors and intestinal inflammation: mechanisms and therapeutic potential. Nutrients. 2023;15: (article number used by journal). Available from: https://doi.org/10.3390/nu15132992
  28. Lu H, Zhu X, Zhang H, Chi X, Liang X, Zhang Y. et al. SIRT2 and neuroinflammation: roles in ischemic stroke and neurodegenerative diseases. Front Pharmacol. 2023;14.
  29. Dizdar N, Granérus AK. Intravenous NADH in Parkinson’s disease: a clinical study. Acta Neurol Scand. 1994;90.
  30. Birkmayer JG, Vrecko C. Nicotinamide adenine dinucleotide (NADH) in the therapy of Parkinson’s disease. Wien Klin Wochenschr. 1989;101: (journal pages). Available from: https://pubmed.ncbi.nlm.nih.gov/2644889/
  31. Rutherford E. Intravenous NAD+ therapy: safety, tolerability, and clinical considerations. (Clinical review/position article; journal uses article identifiers).
  32. Poyan Mehr A, Tran MT, Ralto KM, Leaf DE, Washco V, Messmer J, et al. De novo NAD+ biosynthetic impairment in acute kidney injury in humans. Nat Med. 2018;24(9):1351–1359. Available from: https://doi.org/10.1038/s41591-018-0138-z
  33. Ralto KM, Parikh SM. NAD+ homeostasis in renal health and disease. Nat Rev Nephrol. 2020;16(2):99–111. Available from: https://doi.org/10.1038/s41581-019-0216-6
  34. Abdellatif M, Sedej S, Carmona-Gutierrez D, Madeo F, Kroemer G. Autophagy in cardiovascular aging. Circulation. 2021;144(21):1713–1726. Available from: https://doi.org/10.1161/circresaha.118.312208
  35. Brown KD, Maqsood S, Huang JY, Pan Y, Harkcom W, Li W, et al. Activation of SIRT3 by the NAD+ precursor nicotinamide riboside protects from noise-induced hearing loss. Cell Metab. 2014;20(6):1059–1068. Available from: https://doi.org/10.1016/j.cmet.2014.11.003
  36. Imai SI, Guarente L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 2014;24(8):464–471. Available from: https://doi.org/10.1016/j.tcb.2014.04.002
  37. Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13(4):225–238. Available from: https://doi.org/10.1038/nrm3293
  38. Xie N, Zhang L, Gao W, Huang C, Huber PE, Zhou X et al. NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct Target Ther. 2020;5(1):227. Available from: https://www.nature.com/articles/s41392-020-00311-7
  39. Cederbaum AI. Alcohol metabolism. Clin Liver Dis. 2012;16(4):667–685. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC3484320/
  40. Draelos ZD, Jacobson EL, Kim H, Kim M, Jacobson MK. et al. A pilot study evaluating the efficacy of a topical preparation containing niacin derivatives in female pattern hair loss. Dermatol Surg. 2005;31: 258-261. Available from: https://doi.org/10.1111/j.1473-2165.2005.00201.x
  41. Choi YH. Niacinamide down-regulates DKK-1 and protects hair follicle cells from oxidative stress-associated senescence. Int J Mol Sci. 2021;22.
  42. Korcz E, Varga L. Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Trends Food Sci Technol. 2021;110:375-384. Available from: https://doi.org/10.1016/j.tifs.2021.02.014
  43. Korcz E, Varga L, Kerényi Z. Relationship between total cell counts and exopolysaccharide production of Streptococcus thermophilus T9 in reconstituted skim milk. Lebensm Wiss Technol. 2021;148:111775. Available from: https://doi.org/10.1016/j.lwt.2021.111775
  44. Kapcsándi V, Hanczné Lakatos E, Sik B, Linka LA, Székelyhidi R. Antioxidant and polyphenol content of different grape seed cultivars and the possible use of grape seed flour in functional bakery products. Chem Pap. 2022;76(3):1279-1289. Available from: https://doi.org/10.1007/s11696-021-01754-0
  45. Kapcsándi V, Hanczné Lakatos E, Sik B, Linka LA, Székelyhidi R. Impact of tincture production on total polyphenol, total antioxidant, and total flavonoid content of some medicinal plants. Chem Pap. 2022;76(3):1323-1333. doi:10.1007/s11696-021-01755-z.
  46. Kapcsándi V, Hanczné Lakatos E, Sik B, Linka LA, Székelyhidi R. Characterization of fatty acid, antioxidant, and polyphenol content of grape seed oil from different Vitis vinifera L. varieties. OCL. 2021;28:30. Available from: https://doi.org/10.1051/ocl/2021017
  47. Polgár B, Bódis J. Early pathways, biomarkers, and subclasses of preeclampsia. Placenta. 2022;121:166-173. doi:10.1016/j.placenta.2022.03.009.
  48. Buzás H, Székelyhidi R, Szafner G, Szabó K, Süle J, Bukovics S, et al. Developed a rapid and simple RP-HPLC method for the simultaneous separation and quantification of bovine milk protein fractions and their genetic variants. Anal Biochem. 2022;655:114939. Available from: https://doi.org/10.1016/j.ab.2022.114939
  49. Nagy E. Mortality on DOACs versus on vitamin K antagonists in atrial fibrillation: analysis of the Hungarian Health Insurance Fund database. Clin Ther. 2023;45(5):598-608. doi:10.1016/j.clinthera.2023.03.008.
  50. Kovács B. A large sample cross-sectional study on mental health challenges among adolescents and young adults during the COVID-19 pandemic: at-risk group for loneliness and hopelessness. J Affect Disord. 2023;322:24-34. doi:10.1016/j.jad.2023.01.067.
  51. Orosz E. High prevalence of burnout among midwives in Hungary: results of a national representative survey. Heliyon. 2024;10(3):e24495. doi:10.1016/j.heliyon.2024.e24495.
  52. Fodor S. Peer education program to improve fluid consumption in primary schools: lessons learned from an innovative pilot study. Heliyon. 2024;10(5):e26769. doi:10.1016/j.heliyon.2024.e26769.
  53. Ráthonyi O. Pregnancy-induced gait alterations: systematic review and meta-regression analysis. Front Bioeng Biotechnol. 2024;12:1506002. doi:10.3389/fbioe.2024.1506002.
  54. Koh Y, et al. Long-term clinical and angiographic outcome of T- or Y-stent-assisted coiling of basilar tip aneurysms. Curr Med Res Opin. 2024;40(12):2291-2298. doi:10.1080/14796678.2024.2435205.
  55. Uzzoli A. Innovative decision-making methods in medical fields: an analysis of multi-fuzzy sets and methods. Sci Rep. 2024;14:30137. doi:10.1038/s41598-024-79725-0.
  56. Moutia T, Lakatos E, Kovács AJ. Impact of dehydration techniques on nutritional, physicochemical, antioxidant, and microbial profiles of dried mushrooms: a systematic review. Foods. 2024;13(20):3245. Available from: https://doi.org/10.3390/foods13203245
  57. Sami A, Javed A, Ozsahin DU, Ozsahin I, Muhammad K, Waheed Y. Genetics of diabetes and its complications: a comprehensive review. Diabetol Metab Syndr. 2025;17(1):185. Available from: https://doi.org/10.1186/s13098-025-01748-y
  58. Szatmári I, Santer FR, Kunz Y, van Creij NCH, Tymoszuk P, Klinglmair G, et al. Biological and therapeutic implications of sex hormone-related gene clustering in testicular cancer. Basic Clin Androl. 2025;35:9. Available from: https://doi.org/10.1186/s12610-025-00254-5
  59. Uppal R, Saeed U, Tahir R, Uppal MR, Khan AA, Rahman C, et al. Lymphopenia as a diagnostic biomarker in clinical COVID-19: insights from a comprehensive study on SARS-CoV-2 variants. Braz J Biol. 2025;85:e284362. Available from: https://doi.org/10.1590/1519-6984.284362
  60. Uppal R, Rehan Uppal M, Tahir R, Saeed U, Khan AA, Uppal MS, et al. Bacterial infections and antimicrobial resistance patterns: a comprehensive analysis of health dynamics across regions in Pakistan (2013–2023). Braz J Biol. 2025;85:e285605. Available from: https://doi.org/10.1590/1519-6984.285605
  61. Westmattelmann D, Sprenger M, Lanfer J, Stoffers B, Petróczi A. The impact of sample retention and further analysis on doping behavior and detection: evidence from agent-based simulations. Front Sports Act Living. 2025;7:1578929. Available from: https://doi.org/10.3389/fspor.2025.1578929

Figures:

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?