Abstract

Review Article

Hyperprolactinaemia Contributes to Immunosuppressive and Corticosteroid Drug Resistance

Ian C Chikanza*

Published: 15 October, 2025 | Volume 9 - Issue 1 | Pages: 001-009

Prolactin (PRL), a hormone traditionally associated with lactation, has been increasingly recognized for its significant role in the immune system. This paper explores the multifaceted functions of PRL, particularly its contribution to immunosuppressive and corticosteroid drug unresponsiveness, commonly referred to as drug resistance. Hyperprolactinemia has been observed in various autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc), Sjögren’s syndrome (SS), and multiple sclerosis (MS). The association between PRL and these diseases is partly explained by the proximity of the PRL gene to the HLA-DBR1 region on chromosome 6, suggesting a genetic link to autoimmune pathogenesis. Furthermore, PRL’s interaction with immune cells, including T-cells, B-cells, and macrophages, as well as its production by these cells, underscores its role in modulating immune responses. This paper hypothesizes that hyperprolactinemia contributes significantly to the resistance to immunosuppressive and corticosteroid therapy frequently observed in autoimmune diseases. The mechanisms involve PRL’s interference with corticosteroid receptor signaling pathways, STAT5 pathways, and the IL-2 receptor pathways, leading to diminished anti-inflammatory effects. 
Furthermore, PRL is involved in PRL/JAK2 interactions, activation of the Ras/Raf/MAP kinase pathways, as well as the pathways involving the Src family of kinases (e.g, Fyn) and SHP2, IRS-1, and PI-3 kinase activation. In vitro and animal studies further support the immunomodulatory effects of PRL, demonstrating its ability to alter lymphocyte sensitivity to corticosteroids and immunosuppressive drugs. This comprehensive review aims to elucidate the complex interplay between PRL and the immune system, highlighting the potential for targeting PRL pathways in the treatment of autoimmune diseases and overcoming drug resistance.

Read Full Article HTML DOI: 10.29328/journal.acem.1001031 Cite this Article Read Full Article PDF

Keywords:

Prolactin; Drug resistance; Rheumatoid arthritis; SLE; Systemic sclerosis; Sjogren’s; Multiple sclerosis; Transplant rejection; Corticosteroids; Autoimmune disease; Hyperprolactinemia; STAT5; IL-2; T-cells and B-cells; IL-1β; TNF-α

References

  1. Goffin V, Binart N, Touraine P, Kelly PA. Prolactin: The new biology of an old hormone. Annu Rev Physiol. 2002;64:47–67. Available from: https://doi.org/10.1146/annurev.physiol.64.081501.131049
  2. Riddle O, Bates RW, Dykshorn SW. The preparation, identification and assay of prolactin—a hormone of the anterior pituitary. Am J Physiol. 1933;105:191–216. Available from: https://doi.org/10.1152/AJPLEGACY.1933.105.1.191
  3. Ormandy CJ, Camus A, Barra J, Damotte D, Lucas BK, Buteau H, et al. Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev. 1997;11:167–78. Available from: https://doi.org/10.1101/gad.11.2.167
  4. Binart N, Helloco C, Ormandy CJ, Barra J, Clement-Lacroix P, Baran N, et al. Rescue of preimplantatory egg development and embryo implantation in prolactin receptor-deficient mice after progesterone administration. Endocrinology. 2000;141:2691–7. Available from: https://doi.org/10.1210/endo.141.7.7568
  5. Matera L. Endocrine, paracrine and autocrine actions of prolactin on immune cells. Life Sci. 1996;59(8):599–614. Available from: https://doi.org/10.1016/0024-3205(96)00225-1
  6. Ben-Jonathan N, Mershon JL, Allen DL, Steinmetz RW. Extrapituitary prolactin: distribution, regulation, functions, and clinical aspects. Endocr Rev. 1996;17:639–69. Available from: https://doi.org/10.1210/edrv-17-6-639
  7. Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev. 1998;19(3):225–68. Available from: https://doi.org/10.1210/edrv.19.3.0334
  8. Frantz AG. Prolactin. N Engl J Med. 1978;298:201–20. Available from: https://doi.org/10.1056/nejm197801262980408
  9. Vekemans M, Robyn C. The influence of exogenous oestrogens on a circadian periodicity of circulating prolactin in females. J Clin Endocrinol Metab. 1975;40:886–9. Available from: https://doi.org/10.1210/jcem-40-5-886
  10. Li CH, Dixon JS, Lo TB, Pankov YM, Schmidt KD. Amino acid sequence of ovine lactogenic hormone. Nature. 1969;224:695–6. Available from: https://www.periodicos.capes.gov.br/index.php/acervo/buscador.html?task=detalhes&id=W1980133027
  11. Nicoll CS, Mayer GL, Russell SM. Structural features of prolactins and growth hormones that can be related to their biological properties. Endocr Rev. 1986;7:169–203. Available from: https://doi.org/10.1210/edrv-7-2-169
  12. Human Gene Mapping 10. Tenth International Workshop on Human Gene Mapping, New Haven Conference 1989. Cytogenet Cell Genet. 1989;51:154. Available from: https://scispace.com/pdf/contents-vol-51-1989-23y2oz3wdy.pdf
  13. Truong AT, Duez C, Belayew A, Renard A, Pictet R, Bell GI, et al. Isolation and characterization of the human prolactin gene. EMBO J. 1984;3:429–37. Available from: https://doi.org/10.1002/j.1460-2075.1984.tb01824.x
  14. Sabharwal P, Glaser R, Lafuse W, Varma S, Liu Q, Arkins S, et al. Prolactin synthesized and secreted by human peripheral blood mononuclear cell and autocrine growth factor for lymphoproliferation. Proc Natl Acad Sci U S A. 1992;89:7713–6. Available from: https://doi.org/10.1073/pnas.89.16.7713
  15. Bewley TA, Li CH. Circular dichroism studies on human pituitary growth hormone and ovine pituitary lactogenic hormone. Biochemistry. 1972;11:884–8. Available from: https://doi.org/10.1021/bi00755a030
  16. Goffin V, Martial JA, Summers NL. Use of a model to understand prolactin and growth hormone specificities. Protein Eng. 1995;8:1215–23. Available from: https://doi.org/10.1093/protein/8.12.1215
  17. Abdel-Meguid SS, Shieh HS, Smith WW, Dayringer HE, Violand BN, Bentle LA. Three-dimensional structure of a genetically engineered variant of porcine growth hormone. Proc Natl Acad Sci U S A. 1987;84:6434–7. Available from: https://doi.org/10.1073/pnas.84.18.6434
  18. De Vos AM, Ultsch M, Kossiakoff AA. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science. 1992;255:306–12. Available from: https://doi.org/10.1126/science.1549776
  19. Montgomery DW, Shen GK, Ulrich ED, Steiner LL, Parrish PR, Sukosky CF. Human thymocytes express a prolactin-like messenger ribonucleic acid and synthesize bioactive prolactin-like proteins. Endocrinology. 1992;131:3019–26. Available from: https://doi.org/10.1210/endo.131.6.1446637
  20. Vera-Lastra O, Jara LJ, Espinoza LR. Prolactin and autoimmunity. Autoimmun Rev. 2002;1:360–4. Available from: https://doi.org/10.1016/s1568-9972(02)00081-2
  21. Matera L, Cutufia M, Geuna M, Contarini M, Buttiglieri S, Galin S, et al. Prolactin as an autocrine growth factor for the Jurkat human T-leukemic cell line. J Neuroimmunol. 1997;79:12–21. Available from: https://doi.org/10.1016/s0165-5728(97)00096-9
  22. Montgomery DW. Prolactin production by immune cells. Lupus. 2001;10:665–75. Available from: https://doi.org/10.1191/096120301717164895
  23. Kelly PA, Djiane J, Postel-Vinay MC, Edery M. The prolactin/growth hormone receptor family. Endocr Rev. 1991;12:235–51. Available from: https://doi.org/10.1210/edrv-12-3-235
  24. Goffin V, Kelly PA. Prolactin and growth hormone receptors. Clin Endocrinol (Oxf). 1996;45:247–55. Available from: https://doi.org/10.1046/j.1365-2265.1996.00799.x
  25. Goffin V, Kelly PA. The prolactin/growth hormone receptor family: structure/function relationships. J Mammary Gland Biol Neoplasia. 1997;2:7–17. Available from: https://doi.org/10.1023/a:1026313211704
  26. Goffin V, Ferrag F, Kelly PA. Molecular aspects of prolactin and growth hormone receptors. In: LeRoith D, editor. Advances in Molecular and Cellular Endocrinology. Vol. 2. Greenwich (CT): JAI Press; 1998;1–33. Available from: https://doi.org/10.1210/edrv.19.3.0334
  27. Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA. Prolactin (PRL) and its receptors: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev. 1998;19:225–68. Available from: https://doi.org/10.1210/edrv.19.3.0334
  28. Yu-Lee L. Stimulation of interferon regulatory factor-1 by prolactin. Lupus. 2001;10:691–9. Available from: https://doi.org/10.1191/096120301717164921
  29. Wells JA, De Vos AM. Hematopoietic receptor complexes. Annu Rev Biochem. 1996;65:609–34. Available from: https://doi.org/10.1146/annurev.bi.65.070196.003141
  30. Bazan JF. Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci U S A. 1990;87:6934–8. Available from: https://doi.org/10.1073/pnas.87.18.6934
  31. Kelly PA, Djiane J, Postel-Vinay MC, Edery M. The prolactin/growth hormone receptor family. Endocr Rev. 1991;12(3):235–251. Available from: https://doi.org/10.1210/edrv-12-3-235
  32. Fuh G, Wells JA. Prolactin receptor antagonists that inhibit the growth of breast cancer cell lines. J Biol Chem. 1995;270(22):13133–13137. Available from: https://doi.org/10.1074/jbc.270.22.13133
  33. Wilks AF, Harpur AG, Kurban RR, Ralph SJ, Zürcher G, Ziemiecki A. Two novel protein tyrosine kinases, each with a second phosphotransferase-related catalytic domain, define a new class of protein kinase. Mol Cell Biol. 1991;11(4):2057–2065. Available from: https://doi.org/10.1128/mcb.11.4.2057-2065.1991
  34. Ferrag F, Pezet A, Chiarenza A, Buteau H, Nelson BH, Goffin V, et al. Homodimerization of the IL-2 receptor β chain is necessary and sufficient to activate JAK2 and downstream signalling pathways. FEBS Lett. 1998;421(1):32–36. Available from: https://doi.org/10.1016/s0014-5793(97)01529-9
  35. Han Y, Watling D, Rogers NC, Stark GR. Jak2 and Stat5, but not Jak1 and Stat1, are required for prolactin-induced β-lactoglobulin transcription. Mol Endocrinol. 1997;11(8):1180–1188. Available from: https://doi.org/10.1210/mend.11.8.9952
  36. Lebrun JJ, Ali S, Ullrich A, Kelly PA. Proline-rich sequence-mediated JAK2 association to the prolactin receptor is required but not sufficient for signal transduction. J Biol Chem. 1995;270(18):10664–10670. Available from: https://doi.org/10.1074/jbc.270.18.10664
  37. Das R, Vonderhaar BK. Activation of raf-1, MEK, and MAP kinase in prolactin responsive mammary cells. Breast Cancer Res Treat. 1996;40(2):141–149. Available from: https://doi.org/10.1007/bf01806209
  38. Clevenger CV, Medaglia MV. The protein tyrosine kinase p59fyn is associated with prolactin receptor and is activated by prolactin stimulation of T-lymphocytes. Mol Endocrinol. 1994;8(6):674–681. Available from: https://doi.org/10.1210/mend.8.6.7935483
  39. Guyette WA, Matusik RJ, Rosen JM. Prolactin-mediated transcriptional and post-transcriptional control of casein gene expression. Cell. 1979;17(4):1013–1023. Available from: https://doi.org/10.1016/0092-8674(79)90340-4
  40. Yu-Lee LY, Luo G, Moutoussamy S, Finidory J. Prolactin and growth hormone signal transduction in lymphohemopoietic cells. Cell Mol Life Sci. 1998;54(10):1067–1075. Available from: https://doi.org/10.1007/s000180050235
  41. Leff MA, Buckley DJ, Krumenacker JS, Reed JC, Miyashita T, Buckley AR. Rapid modulation of the apoptosis regulatory genes bcl-2 and bax by prolactin in rat Nb2 lymphoma cells. Endocrinology. 1996;137(12):5456–5462. Available from: https://doi.org/10.1210/endo.137.12.8940371
  42. Matera L, Caseno A, Bellone G, Oberholtzer E. Modulatory effect of prolactin on the resting and mitogen-induced activity of T, B and NK lymphocytes. Brain Behav Immun. 1992;6(5):409–417. Available from: https://doi.org/10.1016/0889-1591(92)90039-q
  43. Mukherjee P, Mastro A, Hymer WC. Prolactin induction of interleukin-2 receptors on rat splenic lymphocytes. Endocrinology. 1990;126(1):88–94. Available from: https://doi.org/10.1210/endo-126-1-88
  44. Cesario TC, Yousefi S, Carandana G, Sadati N, Le J, Vaziri N. Enhanced yields of gamma interferon in prolactin treated human peripheral blood mononuclear cells. Proc Soc Exp Biol Med. 1994;205(1):89–95. Available from: https://doi.org/10.3181/00379727-205-43683
  45. Kumar A, Singh SM, Sodhi A. Effect of prolactin on nitric oxide and interleukin-1 production in murine peritoneal macrophages: role of Ca²⁺ and protein kinase C. Int J Immunopharmacol. 1997;19(2):129–133. Available from: https://doi.org/10.1016/s0192-0561(97)00022-2
  46. Hartmann DP, Holaday JW, Bernton EW. Inhibition of lymphocyte proliferation by antibodies to prolactin. FASEB J. 1989;3(10):2194–2202. Available from: https://doi.org/10.1096/fasebj.3.10.2787766
  47. Chikanza IC, Kozaci DL. Corticosteroid resistance in rheumatoid arthritis: molecular and cellular perspectives. Rheumatology (Oxford). 2004;43(11):1337–1345. Available from: https://doi.org/10.1093/rheumatology/keh333
  48. Stocklin E, Wissler M, Gouilleux F, Groner B. Functional interactions between Stat5 and the glucocorticoid receptor. Nature. 1996;383(6602):726–728. Available from: https://doi.org/10.1038/383726a0
  49. Wolfe AP. Transcriptional control. Sinful repression. Nature. 1997;387(6628):16–17. Available from: https://doi.org/10.1038/387016a0
  50. Zhang Z, Jones S, Hagood JS, Fuentes NL, Fuller GM. STAT3 acts as a co-activator of glucocorticoid receptor signalling. J Biol Chem. 1997;272(49):30607–30610. Available from: https://doi.org/10.1074/jbc.272.49.30607
  51. Barnes PJ, Adcork I. Anti-inflammatory actions of steroids: molecular mechanisms. Trends Pharmacol Sci. 1993;14:436–41. Available from: https://doi.org/10.1016/0165-6147(93)90184-l
  52. Karin M. The regulation of AP-1 activity by mitogen activated protein kinases. J Biol Chem. 1995;270(28):16483–5. Available from: https://doi.org/10.1074/jbc.270.28.16483
  53. Al-Sakkaf KA, Dobson PRM, Brown BL. Activation of phosphatidylinositol-3-OH kinase by prolactin in Nb2 cells. Biochem Biophys Res Commun. 1996;221:779–84. Available from: https://doi.org/10.1006/bbrc.1996.0673
  54. Bernton EW. Suppression of lymphocyte and adrenocortical function by corticosterone: In vivo antagonism by prolactin. Pharmacologist. 1988;30:A123.
  55. Chikanza IC. Prolactin and neuroimmunomodulation: In vitro and in vivo observations. Neuroendocrine Immune Basis of the Rheumatic Diseases. 1999;876:119–130. Available from: https://doi.org/10.1111/j.1749-6632.1999.tb07629.x
  56. Gala RR, Shevach EM. Influence of prolactin and growth hormone on the activation of dwarf mouse lymphocytes in vivo. Proc Soc Exp Biol Med. 1993;204:224–30. Available from: https://doi.org/10.3181/00379727-204-43657
  57. Berczi I, Nagy E, Asa SL, Kovacs K. The influence of pituitary hormones on adjuvant arthritis. Arthritis Rheum. 1984;27:682–8. Available from: https://doi.org/10.1002/art.1780270612
  58. Nagy E, Berczi I, Wren GE, Asa SL, Kovacs K. Immunomodulation by bromocriptine. Immunopharmacology. 1983;6:231–43. Available from: https://doi.org/10.1016/0162-3109(83)90023-1
  59. Nagy E, Berczi I. Prolactin and contact sensitivity. Allergy. 1981;36:429–31. Available from: https://doi.org/10.1111/j.1398-9995.1981.tb01850.x
  60. Berczi I, Nagy E, Kovacs K, Howarth E. Regulation of humoral immunity in rats by pituitary hormones. Acta Endocrinol. 1981;98:506–13. Available from: https://semopenalex.org/work/W2056372266
  61. Brennan P, Hajeer A, Ong KR, Worthington J, John S, Thomson W, et al. Allelic markers close to prolactin are associated with HLA-DRB1 susceptibility alleles among women with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Rheum. 1997;40:1383–6. Available from: https://doi.org/10.1002/art.1780400804
  62. Vera-Lastra O, Jara LJ, Espinoza LR. Prolactin and autoimmunity. Autoimmun Rev. 2002;1:360–4. Available from: https://doi.org/10.1016/s1568-9972(02)00081-2
  63. Stevens A, Ray D, Alansari A, Hajeer A, Thomson W, Donn R, et al. Characterization of a prolactin gene polymorphism and its associations with systemic lupus erythematosus. Arthritis Rheum. 2001;44:2358–66. Available from: https://doi.org/10.1002/1529-0131(200110)44:10%3C2358::aid-art399%3E3.0.co;2-k
  64. De Bellis A, Bizzarro A, Pivonello R, Lombardi G, Bellastella A. Prolactin and autoimmunity. Pituitary. 2005;8:25–30. Available from: https://doi.org/10.1007/s11102-005-5082-5
  65. Chikanza IC. The neuroendocrine immunology of rheumatoid arthritis. Baillieres Clin Rheumatol. 1996;10(2):273–94.
  66. Chikanza IC, Panayi GS. Hypothalamic-pituitary mediated modulation of immune function: Prolactin as a neuroimmune peptide. Br J Rheumatol. 1991;30:203–7. Available from: https://doi.org/10.1093/rheumatology/30.3.203
  67. Chikanza IC, Petrou P, Chrousos G, Kingsley G, Panayi GS. Excessive and dysregulated secretion of prolactin in rheumatoid arthritis: Immunopathogenetic and therapeutic implications. Br J Rheumatol. 1993;32:445–8. Available from: https://doi.org/10.1093/rheumatology/32.6.445
  68. Chikanza IC, Chrousos G, Panayi GS. Abnormal neuroendocrine immune communications in rheumatoid arthritis. Eur J Clin Invest. 1992;22:635–7. Available from: https://doi.org/10.1111/j.1365-2362.1992.tb01422.x
  69. Jorgensen C, et al. Dysregulation of hypothalamo-pituitary axis in rheumatoid arthritis. J Rheumatol. 1995;22:1829–33. Available from: https://pubmed.ncbi.nlm.nih.gov/8991978/
  70. Ram S, Blumberg D, Newton P, Anderson NR, Gama R. Raised serum prolactin in rheumatoid arthritis: genuine or laboratory artefact? Rheumatology. 2004;43:1272–4. Available from: https://doi.org/10.1093/rheumatology/keh307
  71. Olsen NJ, Kovacs WJ. Hormones, pregnancy, and rheumatoid arthritis. J Gend Specif Med. 2002;5:28–37. Available from: https://pubmed.ncbi.nlm.nih.gov/12192884/
  72. Hampl JS, Papa DJ. Breastfeeding-related onset, flare, and relapse of rheumatoid arthritis. Nutr Rev. 2001;59:264–8. Available from: https://doi.org/10.1111/j.1753-4887.2001.tb05511.x
  73. Nagafuchi H, Suzuki N, Kaneko A, Asai T, Sakane T. Prolactin locally produced by synovium infiltrating T lymphocytes induces excessive synovial cell functions in patients with rheumatoid arthritis. J Rheumatol. 1999;26:1890–900. Available from: https://pubmed.ncbi.nlm.nih.gov/10493666/
  74. Yu-Lee LY. Prolactin modulation of immune and inflammatory responses. Recent Prog Horm Res. 2002;57:435–55. Available from: https://doi.org/10.1210/rp.57.1.435
  75. Leanos-Miranda A, Cardenas-Mondragon G. Serum free prolactin concentrations in patients with systemic lupus erythematosus are associated with lupus activity. Rheumatology. 2006;45:97–101. Available from: https://doi.org/10.1093/rheumatology/kei115
  76. Jacobi AM, Rohde W, Ventz M, Riemekasten G, Burmester GR, Hiepe F. Enhanced serum prolactin (PRL) in patients with systemic lupus erythematosus: PRL levels are related to the disease activity. Lupus. 2001;10:554–61. Available from: https://doi.org/10.1191/096120301701549688
  77. Buskila D, Lorber M, Neumann L, Flusser D, Shoenfeld Y. No correlation between prolactin levels and clinical activity in patients with systemic lupus erythematosus. J Rheumatol. 1996;23:629–32. Available from: https://pubmed.ncbi.nlm.nih.gov/8730116/
  78. Zoli A, Ferlisi EM, Pompa A, Barini A, Altomonte L, Mirone L, et al. Basal and after-stimuli test for prolactinemia in systemic lupus erythematosus. Ann N Y Acad Sci. 1999;876:155–8. Available from: https://doi.org/10.1111/j.1749-6632.1999.tb07634.x
  79. Jara LJ, Vera-Lastra O, Miranda JM, Alcala M, Alvarez-Nemegyei J. Prolactin in human systemic lupus erythematosus. Lupus. 2001;10:748–56. Available from: https://doi.org/10.1191/096120301717164994
  80. Leanos-Miranda A, Pascoe-Lira D, Chavez-Rueda KA, Blanco-Favela F. Antiprolactin autoantibodies in systemic lupus erythematosus: frequency and correlation with prolactinemia and disease activity. J Rheumatol. 2001;28:1546–53. Available from: https://pubmed.ncbi.nlm.nih.gov/11469460/
  81. Peeva E, Grimaldi C, Spatz L, Diamond B. Bromocriptine restores tolerance in estrogen-treated mice. J Clin Invest. 2000;106:1373–9. Available from: https://doi.org/10.1172/jci10420
  82. Kucharz EJ, Jarczyk R, Jonderko G, Rubisz-Brezezinska J, Brzezinska-Wcislo L. High serum level of prolactin in patients with systemic sclerosis. Clin Rheumatol. 1996;15:314. Available from: https://doi.org/10.1007/bf02229718
  83. Czuwara-Ladykowska J, Sicinska J, Olszewska M, Uhrynowska-Tyszkiewicz I, Rudnicka L. Prolactin synthesis by lymphocytes from patients with systemic sclerosis. Biomed Pharmacother. 2006;60:152–5. Available from: https://doi.org/10.1016/j.biopha.2006.02.007
  84. Haga HJ, Rygh T. The prevalence of hyperprolactinemia in patients with primary Sjogren's syndrome. J Rheumatol. 1999;26:1291–5. Available from: https://pubmed.ncbi.nlm.nih.gov/10381045/
  85. Kira J, Harada M, Yamaguchi Y, Shida N, Goto I. Hyperprolactinemia in multiple sclerosis. J Neurol Sci. 1991;102:61–6. Available from: https://doi.org/10.1016/0022-510x(91)90094-n
  86. Dijkstra CD, van der Voort ER, De Groot CJ, Huitinga I, Uitdehaag BM, Polman CH, et al. Therapeutic effect of the D2-dopamine agonist bromocriptine on acute and relapsing experimental allergic encephalomyelitis. Psychoneuroendocrinology. 1994;19:135–42. Available from: https://doi.org/10.1016/0306-4530(94)90003-5
  87. Bissay V, De Klippel N, Herroelen L, Schmedding E, Buisseret T, Ebinger G, et al. Bromocriptine therapy in multiple sclerosis: an open label pilot study. Clin Neuropharmacol. 1994;17:473–6. Available from: https://doi.org/10.1097/00002826-199410000-00011
  88. Cosson C, Myara I, Guillemain R, Amrein C, Dreyfus G, Moatti N. Serum prolactin as a rejection marker in heart transplantation. Clin Chem. 1989;35:492–3. Available from: https://pubmed.ncbi.nlm.nih.gov/2646036/
  89. Hiestand PC, Mekler P, Nordmann R, Grieder A, Permmongkol C. Prolactin as a modulator of lymphocyte responsiveness provides a possible mechanism of action of cyclosporin A. Proc Natl Acad Sci U S A. 1986;83:2599–603. Available from: https://doi.org/10.1073/pnas.83.8.2599
  90. Hiestand PC, Mekler P. Mechanism of action. Cyclosporin A and prolactin-mediated control of immunity. Proc Allergy. 1986;38:239–46. Available from: https://www.researchgate.net/publication/20140827_Mechanism_of_Action_Ciclosporin-_and_Prolactin-Mediated_Control_of_Immunity

Figures:

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?