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Abstract

The dynamics of the glucose-insulin regulatory system are highly nonlinear
and must be understood to be controlled effectively. Bifurcation analysis and
multiobjective nonlinear model predictive control (MNLMPC) are performed on a
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glucose-insulin dynamic model. MATCONT wass used for the bifurcation analysis,
and for the MNLMPC calculations, the optimization language PYOMO is used in
conjunction with the solvers IPOPT and BARON. The bifurcation analysis revealed
a Hopf bifurcation point and a limit point. A Hopf bifurcation point is a tipping
point where a system that was behaving steadily suddenly starts to oscillate or
cycle on its own, like a machine that begins to vibrate instead of staying still. A
limit point is a tipping point at which pushing a system a little further suddenly
causes it to jump to a completely different state, rather than changing smoothly.
MNLMC converged on the Utopia solution. The Hopf bifurcation point, which leads
to an unwanted limit cycle, is eliminated by an activation factor. A limit cycle is a
repeating pattern of behavior that a system naturally settles into over time, like
a steady heartbeat or a clock that keeps ticking. The limit point (which causes
multiple steady-state solutions from a singular point enables the Multiobjective
nonlinear model predictive control calculations to converge to the Utopia point
(the best possible solution) in the model. A Utopia solution in multi-objective
nonlinear model predictive control is an ideal operating point at which all goals
are simultaneously perfectly optimized.
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insulin followed by a slower, sustained phase driven by new
insulin synthesis. This dynamic secretion pattern is crucial for
limiting postprandial glucose excursions.

Background

Glucose-insulin dynamics describe the tightly regulated
physiological processes that maintain blood glucose levels

within a narrow range, ensuring a continuous supply of
energy to tissues while preventing the harmful effects of
hyperglycemia or hypoglycemia. This regulatory system
involves complex interactions between glucose absorption,
insulin secretion, tissue uptake, hepatic glucose production,
and hormonal feedback mechanisms. Understanding glucose-
insulin dynamics is fundamental in physiology, medicine,
and systems biology, particularly in the study of metabolic
disorders such as diabetes mellitus.

After a meal, carbohydrates are digested into glucose,
which enters the bloodstream and raises plasma glucose
concentration. Specialized f-cells in the pancreatic islets of
Langerhans detect this increase via glucose metabolism and
membrane depolarization. In response, insulin is secreted
in a biphasic manner: an initial rapid release of pre-stored
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Insulin is the primary anabolic hormone that regulates
glucose homeostasis. It promotes glucose uptake in insulin-
sensitive tissues, particularly skeletal muscle and adipose
tissue, by stimulating the translocation of glucose transporter
type 4 (GLUT4) to the cell membrane. In the liver, insulin
suppresses hepatic glucose production by inhibiting
gluconeogenesis and glycogenolysis, while simultaneously
promoting glycogen synthesis. These combined actions
reduce circulating glucose levels and facilitate energy storage.

During fasting or between meals, insulin levels decline,
and counter-regulatory hormones such as glucagon, cortisol,
growth hormone, and catecholamines become more
influential. Glucagon, secreted by pancreatic a-cells, stimulates
hepatic glucose output to maintain adequate plasma glucose
levels for glucose-dependent organs, especially the brain.
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The dynamic balance between insulin and these counter-
regulatory hormones ensures metabolic stability under
varying nutritional and physiological conditions.

Mathematical and computational models have been widely
used to study glucose-insulin dynamics and quantify insulin
sensitivity and f-cell function. Classic models, such as the
minimal model of glucose kinetics, describe glucose-insulin
interactions using coupled differential equations. These
models capture essential features such as insulin-mediated
glucose disposal and endogenous glucose production,
providing valuable insights for both clinical assessment and
control-oriented applications, including artificial pancreas
systems.

Disruptionsinglucose-insulindynamicsunderliemetabolic
diseases. In type 1 diabetes, autoimmune destruction of §-cells
leads to absolute insulin deficiency, resulting in uncontrolled
hyperglycemia. In type 2 diabetes, insulin resistance in
peripheral tissues combined with impaired insulin secretion
leads to chronic dysregulation of glucose levels. Over time,
persistent hyperglycemia contributes to vascular, renal,
neurological, and cardiovascular complications.

Glucose-insulin dynamics represent a highly coordinated,
nonlinear control system that integrates hormonal signaling,
tissue-specific responses, and feedback regulation. Their
study provides a unifying framework for understanding
normal metabolic function, disease mechanisms, and the
development of therapeutic and control strategies to restore
glucose homeostasis. Topp, et al. [1] developed a model of
B-cells, insulin, and glucose thatincludes pathways to diabetes.
Lenbury, et al. [2] modelled insulin kinetics, investigating
responses to a single oral glucose administration or
ambulatory-fed conditions. Shanik, et al. [3] investigated the
relationship between insulin resistance and hyperinsulinemia.
Han, et al. [4] developed a mathematical model of the glucose-
insulin regulatory system from the bursting electrical activity
in pancreatic f-cells to the glucose dynamics in the whole
body. Lombarte, et al. [5] developed a mathematical model
of glucose-insulin homeostasis in healthy rats. Boutayeb, et
al. [6] conducted a mathematical modelling and simulation
study of B-cell mass, insulin, and glucose dynamics, examining
the effects of genetic predisposition to diabetes. Ho, et al. [7]
provided insulin-sensitivity predictions for individuals with
obesity and type II diabetes mellitus using a mathematical
model of the insulin signal transduction pathway. Brenner M,
et al. [8] provided an estimation of insulin secretion, glucose
uptake by tissues, and liver handling of glucose using a
mathematical model of glucose-insulin homeostasis in lean
and obese mice. Mahata, et al. [9] developed a mathematical
model of the glucose-insulin regulatory system in diabetes
mellitus in both fuzzy and crisp environments. Shabestari,
et al. [10] developed a new chaotic model for the glucose-
insulin regulatory system. Lombarte, et al. [11] provided in
vivo measurements of the rate constants for hepatic glucose
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handling and insulin-dependent glucose uptake, using a
mathematical model of glucose homeostasis in diabetic rats.
Kadota, et al. [12] developed a mathematical model of type 1
diabetes that includes leptin effects on glucose metabolism.
Alj, etal. [13] developed a mathematical model of the effects of
growth hormone on glucose homeostasis. Farman, et al. [14]
performed linear control of a composite model for a glucose,
insulin, and glucagon pump. Ibrahim, et al. [15] developed an
improved version of the integrated glucose-insulin minimal
model. Jamwal, et al. [16] researched new glucose oxidase-
immobilized stimuli-responsive dextran nanoparticles for
insulin delivery. Lopez-Zazueta, et al. [17] discussed simple
nonlinear models for glucose-insulin dynamics application to
intraperitoneal insulin infusion. Loppini, et al. [18] studied
biophysical modeling of -cell networks. Stamper, et al. [19]
showed that the Integrated multiscale mathematical modeling
of insulin secretion reveals the role of islet network integrity
for proper oscillatory glucose-dose response. Kumari, et al.
[20] performed bifurcation and stability analyses of the
glucose-insulin regulatory system in the presence of f-cells.
In this work, bifurcation analysis and multiobjective nonlinear
control (MNLMPC) studies are conducted on a glucose-insulin
dynamic model described in Kumari, etal. 2021 [20]. The paper
is organized as follows. The model equations are discussed in
the context of numerical techniques for bifurcation analysis
and multiobjective nonlinear model predictive control
(MNLMPC). The results are then presented, followed by the
discussion and conclusions.

Model equations [20]

In this mode, gv, iv, and represent the plasma glucose
concentration, plasma insulin, and the mass of f cells. The
model equations are

d(gv) _amv) _

=—civ+cl
dt B
ddv) _ dpgv f (iv) (1)
dt  j+gv?
d(p) _

4 =98t h(gv)B —ipar(gv*)3

The base parameter values are

A=15.03;nv=1;¢=0.023999999; c1 = 0.49999; d = 43.2;
j =20000; f =432; = 0.0527559999522; H = 0.84e-03; ipar =
0.24e-05.

Bifurcation analysis

Bifurcation analysis is done with MATCONT [21,22], a
commonly used MATLAB program that locates limit points,
branch points, and Hopf bifurcation points. This program
detects Limit points(LP), branch points(BP), and Hopf

bifurcation points(H) for an ODE system
dx
— = f(x, 2
) 2
X € R" Let the bifurcation parameter be. Since the gradient

is orthogonal to the tangent vector.
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The tangent plane at any point must satisfy.

Aw=20 3)
Where Ais
A=[of /ox |of /oa] 4)

Where is the Jacobian matrix? For both limit and branch
points, the Jacobian matrix must be singular.

For a limit point, there is only one tangent at the point of
singularity, and the n+1" component of the tangent vector
W . =0, and at a branch point (BP), the matrix must be

singular.

For a Hopf bifurcation,

det2 fy (X, @)@ 1,,) = 0 (5)

@ indicates the bilateral product, while is the n-square
identity matrix. Hopf bifurcations cause limit cycles and
should be eliminated because limit cycles make optimization
and control tasks very difficult. More details can be found in
Kuznetsov [23,24] and Govaerts [25].

Hopf bifurcations cause limit cycles. The tanh activation
function (where a control value u is replaced by) (u tanh u/«)
is used to eliminate spikes [26-29]. Sridhar [30] demonstrated
how the activation factor involving the tanh function also
eliminates the Hopf bifurcation points by increasing the
oscillation time period in the limit cycle.

Multiobjective Nonlinear Model Predictive Control
(MNLMPC)

The multiobjective nonlinear model predictive control
(MNLMPC) method developed by Flores Tlacuahuaz, et al.
[31] was used.

=ty

In a problem where the variables )" q;(t) (j = 1, 2,..n) have
1;

to be optimized simultaneously for alaynamic problem

dx
T F(x,u) (6)

tf being the final time value, and n the total number of
objective variables; u the control parameter. The single
objective optimal control problem is solved by individually
optimizing each of the variables. The optimization will lead to
the values. Then, the multiobjective optimal control (MOOC)

problem that will be solved is
n L=t

min(>_ (> a(t)-a))’

e (7)
. dx

subject to — = F(x,u);
j ot (x,u)

This will provide the values of u at various times. The first
obtained control value of u is implemented, and the rest are
discarded. This procedure is repeated until the implemented
and the first obtained control values are the same, or until the
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t =t
Utopia point where ( Z qj(t) = q]f for all j) is obtained.
tizo
Pyomo [32] is used for these calculations in conjunction
with [POPT [33] and BARON [34].

Sridhar [35] demonstrated that the presence of limit and
branch points enabled the MNLMPC calculations to converge
to the Utopia solution. This was done by imposing the
singularity condition, caused by the presence of the limit or
branch points, on the co-state equation [36].

Results and discussion

The bifurcation analysis of this model reveals limit and
Hopf bifurcation points.

Limit points

A limit point is a tipping point at which pushing a system
a little further suddenly causes it to jump to a completely
different state, rather than changing smoothly.

Kumari, et al. [20] show that when g, h, and ipar were
the bifurcation parameters, the model exhibits limit points.
This result is confirmed and reproduced. When g was the
bifurcation parameter, a limit point was found at (gv, iv, 3, g)
values of ((175.000002 22.515503 372.195048 0.073500)
(Figure 1a). When h was the bifurcation parameter, a limit
point was found at (gv, iv, §, h) values of (148.262155
22.303139 425.956300 0.000712) (Figure 1b) When ipar
was the bifurcation parameter, a limit point was found at (gv,
iv, B, ipar) values of (125.609524 22.083499 500.767116
0.000003) (Figure 1c).

Hopf bifurcation points

A Hopf bifurcation point is a tipping point where a system
that was behaving steadily suddenly starts to oscillate or
cycle on its own, like a machine that begins to vibrate instead
of staying still. Hopf Bifurcation points cause limit cycles. A
limit cycle is a repeating pattern of behavior that a system
naturally settles into over time, like a steady heartbeat or

limit point g (bifurcation parameter)
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Figure 1a: Bifurcation diagram (g is the bifurcation parameter).
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Figure 1d: Bifurcation diagram (f is the bifurcation parameter).

Figure 1b: Bifurcation diagram (h is the bifurcation parameter).

Limit cycle (f is bifurcation prameter)
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Figure 1c: Bifurcation diagram (ipar is the bifurcation parameter).

23.49805

a clock that keeps ticking. The limit point (which causes .

multiple steady-state solutions from a singular point enables c T T,

the Multiobjective nonlinear model predictive control - s A

calculations to converge to the Utopia point (the best possible e \

solution) in the model. Kumari, et al. [20] show that when f 2349785 8

was the bifurcation parameter, a Hopf point was found at (gv, 23.4978

iv, f) values of (82.030471 538.186016, 1.210489, 0.024461). 82.03047083453 06
This result is confirmed and reproduced (curve AB in Figure B2 030470834525 o

82.03047083452

1d). When f is modified to f(tan(f))/0.01 the Hopf bifurcation v 0 |
point disappears (curve CD in Figure 1d). The limit cycle
caused by this Hopf bifurcation is shown in Figure 1e.

Figure 1f: Bifurcation diagram (j is the bifurcation parameter).

Another Hopf bifurcation point was found when j was Limit cycle (j is bifurcation parameter)
the bifurcation parameter at (gv, iv, j) values of (82.030471,
23.497933, 234.989285, 0.285128) (curve AB in Figure 1f).
When fis modified to f(tan(f))/0.01, the Hopfbifurcation point
disappears (curve CD in Figure 1f). The limit cycle caused by
this Hopf bifurcation is shown in Figure 1g.

The use of the tanh activation factor eliminated the limit
cycle causing Hopf bifurcation, validating the analysis in
Sridhar [30].

For the MNLMPC calculations in model 1, the values were

maximized individually, and led to values of 2000.32903845
and 2003.55239404. Figure1g: Limit cycle caused by Hopf bifurcation (jis the bifurcation parameter).
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The overall optimal control problem will involve the
minimization of

t=t; t=t;
(> iv(t,) —2000.32903845)* + (Y. A(t;) —2003.55239404)?

tiso tiso
A cost function subject to the model’s governing equations.
This led to a value of zero (the Utopia solution). A Utopia
solution in multi-objective nonlinear model predictive control
isanideal operating pointat which all goals are simultaneously
perfectly optimized.

The MNLMPC value of the control variable, c1, was
5.735e-06. The various MNMPC figures are shown in Figures
2a-2d. The presence of the limit is beneficial because it allows
the MNLMPC calculations to attain the Utopia solution,
validating the analysis of Sridhar [36].
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Figure 2a: MNLMPC (gv vs. t).
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Figure 2c: MNLMPC (beta vs. t).
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Conclusion

Bifurcation analysis and multiobjective nonlinear control
(MNLMPC) studies were performed on a Glucose-Insulin
dynamic model. Hopf bifurcation points and limit points
were detected. The Hopf bifurcation point, which causes an
unwanted limit cycle, is eliminated using an activation factor
involving the tanh function. The limit points (which cause
multiple steady-state solutions from a singular point) are very
beneficial because they enable the Multiobjective nonlinear
model predictive control calculations to converge to the
Utopia point (the best possible solution) in the models.

Data availability statement: All data used is presented in
the paper.
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