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Abstract 

The dynamics of the glucose-insulin regulatory system are highly nonlinear 
and must be understood to be controlled effectively. Bifurcation analysis and 
multiobjective nonlinear model predictive control (MNLMPC) are performed on a 
glucose-insulin dynamic model. MATCONT was used for the bifurcation analysis, 
and for the MNLMPC calculations, the optimization language PYOMO is used in 
conjunction with the solvers IPOPT and BARON. The bifurcation analysis revealed 
a Hopf bifurcation point and a limit point. A Hopf bifurcation point is a tipping 
point where a system that was behaving steadily suddenly starts to oscillate or 
cycle on its own, like a machine that begins to vibrate instead of staying still. A 
limit point is a tipping point at which pushing a system a little further suddenly 
causes it to jump to a completely different state, rather than changing smoothly. 
MNLMC converged on the Utopia solution. The Hopf bifurcation point, which leads 
to an unwanted limit cycle, is eliminated by an activation factor. A limit cycle is a 
repeating pattern of behavior that a system naturally settles into over time, like 
a steady heartbeat or a clock that keeps ticking. The limit point (which causes 
multiple steady-state solutions from a singular point enables the Multiobjective 
nonlinear model predictive control calculations to converge to the Utopia point 
(the best possible solution) in the model. A Utopia solution in multi-objective 
nonlinear model predictive control is an ideal operating point at which all goals 
are simultaneously perfectly optimized.

insulin followed by a slower, sustained phase driven by new 
insulin synthesis. This dynamic secretion pattern is crucial for 
limiting postprandial glucose excursions.

Insulin is the primary anabolic hormone that regulates 
glucose homeostasis. It promotes glucose uptake in insulin-
sensitive tissues, particularly skeletal muscle and adipose 
tissue, by stimulating the translocation of glucose transporter 
type 4 (GLUT4) to the cell membrane. In the liver, insulin 
suppresses hepatic glucose production by inhibiting 
gluconeogenesis and glycogenolysis, while simultaneously 
promoting glycogen synthesis. These combined actions 
reduce circulating glucose levels and facilitate energy storage.

During fasting or between meals, insulin levels decline, 
and counter-regulatory hormones such as glucagon, cortisol, 
growth hormone, and catecholamines become more 
inϐluential. Glucagon, secreted by pancreatic α-cells, stimulates 
hepatic glucose output to maintain adequate plasma glucose 
levels for glucose-dependent organs, especially the brain. 

Background
Glucose–insulin dynamics describe the tightly regulated 

physiological processes that maintain blood glucose levels 
within a narrow range, ensuring a continuous supply of 
energy to tissues while preventing the harmful effects of 
hyperglycemia or hypoglycemia. This regulatory system 
involves complex interactions between glucose absorption, 
insulin secretion, tissue uptake, hepatic glucose production, 
and hormonal feedback mechanisms. Understanding glucose–
insulin dynamics is fundamental in physiology, medicine, 
and systems biology, particularly in the study of metabolic 
disorders such as diabetes mellitus.

After a meal, carbohydrates are digested into glucose, 
which enters the bloodstream and raises plasma glucose 
concentration. Specialized β-cells in the pancreatic islets of 
Langerhans detect this increase via glucose metabolism and 
membrane depolarization. In response, insulin is secreted 
in a biphasic manner: an initial rapid release of pre-stored 
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The dynamic balance between insulin and these counter-
regulatory hormones ensures metabolic stability under 
varying nutritional and physiological conditions.

Mathematical and computational models have been widely 
used to study glucose–insulin dynamics and quantify insulin 
sensitivity and β-cell function. Classic models, such as the 
minimal model of glucose kinetics, describe glucose-insulin 
interactions using coupled differential equations. These 
models capture essential features such as insulin-mediated 
glucose disposal and endogenous glucose production, 
providing valuable insights for both clinical assessment and 
control-oriented applications, including artiϐicial pancreas 
systems.

Disruptions in glucose–insulin dynamics underlie metabolic 
diseases. In type 1 diabetes, autoimmune destruction of β-cells 
leads to absolute insulin deϐiciency, resulting in uncontrolled 
hyperglycemia. In type 2 diabetes, insulin resistance in 
peripheral tissues combined with impaired insulin secretion 
leads to chronic dysregulation of glucose levels. Over time, 
persistent hyperglycemia contributes to vascular, renal, 
neurological, and cardiovascular complications.

Glucose–insulin dynamics represent a highly coordinated, 
nonlinear control system that integrates hormonal signaling, 
tissue-speciϐic responses, and feedback regulation. Their 
study provides a unifying framework for understanding 
normal metabolic function, disease mechanisms, and the 
development of therapeutic and control strategies to restore 
glucose homeostasis. Topp, et al. [1] developed a model of 
B-cells, insulin, and glucose that includes pathways to diabetes. 
Lenbury, et al. [2] modelled insulin kinetics, investigating 
responses to a single oral glucose administration or 
ambulatory-fed conditions.  Shanik, et al. [3] investigated the 
relationship between insulin resistance and hyperinsulinemia.  
Han, et al. [4] developed a mathematical model of the glucose–
insulin regulatory system from the bursting electrical activity 
in pancreatic β-cells to the glucose dynamics in the whole 
body. Lombarte, et al. [5] developed a mathematical model 
of glucose–insulin homeostasis in healthy rats.  Boutayeb, et 
al. [6] conducted a mathematical modelling and simulation 
study of B-cell mass, insulin, and glucose dynamics, examining 
the effects of genetic predisposition to diabetes.  Ho, et al. [7] 
provided insulin-sensitivity predictions for individuals with 
obesity and type II diabetes mellitus using a mathematical 
model of the insulin signal transduction pathway.  Brenner M,
et al. [8] provided an estimation of insulin secretion, glucose 
uptake by tissues, and liver handling of glucose using a 
mathematical model of glucose-insulin homeostasis in lean 
and obese mice.  Mahata, et al. [9] developed a mathematical 
model of the glucose-insulin regulatory system in diabetes 
mellitus in both fuzzy and crisp environments.  Shabestari, 
et al. [10] developed a new chaotic model for the glucose-
insulin regulatory system.  Lombarte, et al. [11] provided in 
vivo measurements of the rate constants for hepatic glucose 

handling and insulin-dependent glucose uptake, using a 
mathematical model of glucose homeostasis in diabetic rats.  
Kadota, et al. [12] developed a mathematical model of type 1 
diabetes that includes leptin effects on glucose metabolism. 
Ali, et al. [13] developed a mathematical model of the effects of 
growth hormone on glucose homeostasis. Farman, et al. [14] 
performed linear control of a composite model for a glucose, 
insulin, and glucagon pump. Ibrahim, et al. [15] developed an 
improved version of the integrated glucose-insulin minimal 
model. Jamwal, et al. [16] researched new glucose oxidase-
immobilized stimuli-responsive dextran nanoparticles for 
insulin delivery. Lopez-Zazueta, et al. [17] discussed simple 
nonlinear models for glucose-insulin dynamics application to 
intraperitoneal insulin infusion. Loppini, et al.  [18] studied 
biophysical modeling of β-cell networks. Stamper, et al. [19] 
showed that the Integrated multiscale mathematical modeling 
of insulin secretion reveals the role of islet network integrity 
for proper oscillatory glucose-dose response. Kumari, et al.
[20] performed bifurcation and stability analyses of the 
glucose-insulin regulatory system in the presence of β-cells.  
In this work, bifurcation analysis and multiobjective nonlinear 
control (MNLMPC) studies are conducted on a glucose-insulin 
dynamic model described in Kumari, et al. 2021 [20]. The paper 
is organized as follows. The model equations are discussed in 
the context of numerical techniques for bifurcation analysis 
and multiobjective nonlinear model predictive control 
(MNLMPC). The results are then presented, followed by the 
discussion and conclusions.

Model equations [20]

In this mode, gv, iv, and represent the plasma glucose 
concentration, plasma insulin, and the mass of β cells. The 
model equations are

 

2

2

2
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( ) ( )
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dt

d iv d gv f iv
dt j gv

d g h gv ipar gv
dt




   

   

 


   

                    (1)

The base parameter values are 

A = 15.03; nv = 1; c = 0.023999999; c1 = 0.49999; d = 43.2;  
j = 20000; f = 432; = 0.0527559999522; H = 0.84e-03; ipar = 
0.24e-05.

Bifurcation analysis 

Bifurcation analysis is done with MATCONT [21,22], a 
commonly used MATLAB program that locates limit points,  
branch points, and Hopf bifurcation points. This program 
detects Limit points(LP), branch points(BP), and Hopf 
bifurcation points(H) for an  ODE  system 

( , )dx f x
dt

                                  (2)

x ∈ Rn  Let the bifurcation parameter be. Since the gradient 
is orthogonal to the tangent vector.  
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The tangent plane at any point must satisfy. 

Aw = 0                      (3)

Where  A is 

[ / | / ]A f x f                          (4)

Where is the Jacobian matrix?  For both limit and branch 
points, the Jacobian matrix must be singular.  

For a limit point, there is only one tangent at the point of 
singularity, and the n+1th component of the tangent vector 
Wn+1 = 0, and at a branch point (BP), the matrix must be 
singular. 

For   a Hopf bifurcation, 

det(2 ( , )@ ) 0f x Ix n                     (5)

@ indicates the bilateral product, while is the n-square 
identity matrix. Hopf bifurcations cause limit cycles and 
should be eliminated because limit cycles make optimization 
and control tasks very difϐicult.  More details can be found in 
Kuznetsov [23,24] and Govaerts  [25].

Hopf bifurcations cause limit cycles. The tanh activation 
function (where a control value u is replaced by) (u tanh u/ε) 
is used to eliminate spikes [26-29]. Sridhar [30] demonstrated 
how the activation factor involving the tanh function also 
eliminates the Hopf bifurcation points by increasing the 
oscillation time period in the limit cycle. 

Multiobjective Nonlinear Model Predictive Control 
(MNLMPC) 

The multiobjective nonlinear model predictive control 
(MNLMPC) method developed by Flores Tlacuahuaz, et al. 
[31] was used. 

In a problem where the variables
0

( )
i f

i

t t

j i
t

q t




 (j = 1, 2,... n) have  

to be optimized simultaneously for  a dynamic problem   

( , )dx F x u
dt

                                      (6)

tf being the ϐinal time value, and n the total number of 
objective variables; u the control parameter. The single 
objective optimal control problem is solved by individually 
optimizing each of the variables. The optimization will lead to 
the values.  Then, the multiobjective optimal control (MOOC)   
problem that will be solved is 

0

* 2

1

min( ( ( ) ))

( , );
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dt
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                  (7)

This will provide the values of u at various times. The ϐirst 
obtained control value of u is implemented, and the rest are 
discarded. This procedure is repeated until the implemented 
and the ϐirst obtained control values are the same, or until the 

Utopia point where (
0

*( )
i f

i

t t

j i j
t

q t q




  for all j)   is obtained. 

Pyomo [32] is used for these calculations in conjunction 
with IPOPT [33] and BARON [34]. 

Sridhar [35] demonstrated that the presence of limit and 
branch points enabled the MNLMPC calculations to converge 
to the Utopia solution. This was done by imposing the 
singularity condition, caused by the presence of the limit or 
branch points, on the co-state equation [36].   

Results and discussion
The bifurcation analysis of this model reveals limit and 

Hopf bifurcation points.

Limit points 

A limit point is a tipping point at which pushing a system 
a little further suddenly causes it to jump to a completely 
different state, rather than changing smoothly. 

Kumari, et al. [20] show that when g, h, and ipar were 
the bifurcation parameters, the model exhibits limit points. 
This result is conϐirmed and reproduced. When g was the 
bifurcation parameter, a limit point was found at (gv, iv, β, g) 
values of  ((175.000002 22.515503 372.195048 0.073500) 
(Figure 1a). When h was the bifurcation parameter, a limit 
point was found at (gv, iv, β, h) values of (148.262155 
22.303139 425.956300 0.000712) (Figure 1b) When ipar 
was the bifurcation parameter, a limit point was found at (gv, 
iv, β, ipar) values of (125.609524 22.083499 500.767116 
0.000003) (Figure 1c).

Hopf bifurcation points

A Hopf bifurcation point is a tipping point where a system 
that was behaving steadily suddenly starts to oscillate or 
cycle on its own, like a machine that begins to vibrate instead 
of staying still. Hopf Bifurcation points cause limit cycles.  A 
limit cycle is a repeating pattern of behavior that a system 
naturally settles into over time, like a steady heartbeat or 

Figure 1a: Bifurcation diagram (g is the bifurcation parameter).
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a clock that keeps ticking. The limit point (which causes 
multiple steady-state solutions from a singular point enables 
the Multiobjective nonlinear model predictive control 
calculations to converge to the Utopia point (the best possible 
solution) in the model.  Kumari, et al. [20] show that when f 
was the bifurcation parameter, a Hopf point was found at (gv, 
iv, f) values of (82.030471 538.186016, 1.210489, 0.024461). 
This result is conϐirmed and reproduced (curve AB in Figure 
1d). When f is modiϐied to f(tan(f))/0.01 the Hopf bifurcation 
point disappears (curve CD in Figure 1d).  The limit cycle 
caused by this Hopf bifurcation is shown in Figure 1e.

Another Hopf bifurcation point was found when j was 
the bifurcation parameter at (gv, iv, j) values of (82.030471, 
23.497933, 234.989285, 0.285128) (curve AB in Figure 1f). 
When f is modiϐied to f(tan(f))/0.01, the Hopf bifurcation point 
disappears (curve CD in Figure 1f).  The limit cycle caused by 
this Hopf bifurcation is shown in Figure 1g.

The use of the tanh activation factor eliminated the limit 
cycle causing Hopf bifurcation, validating the analysis in 
Sridhar [30]. 

For the MNLMPC calculations in model 1, the values were 
maximized individually, and led to values of 2000.32903845 
and 2003.55239404.

Figure 1b: Bifurcation diagram (h is the bifurcation parameter).

Figure 1c: Bifurcation diagram (ipar is the bifurcation parameter).

Figure 1d: Bifurcation diagram (f is the bifurcation parameter).

Figure 1e: Limit cycle caused by Hopf bifurcation (f is the bifurcation parameter).

Figure 1f: Bifurcation diagram (j is the bifurcation parameter).

Figure 1g: Limit cycle caused by Hopf bifurcation (j is the bifurcation parameter).
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The overall optimal control problem will involve the 
minimization of

0 0

2 2( ( ) )2000.32903845 2003.5523940( ( ) )4
i f i f

i i

t t t t

i i
t t

iv t t
 

 

   
A cost function subject to the model’s governing equations. 

This led to a value of zero (the Utopia solution). A Utopia 
solution in multi-objective nonlinear model predictive control 
is an ideal operating point at which all goals are simultaneously 
perfectly optimized.

The MNLMPC value of the control variable, c1, was 
5.735e-06. The various MNMPC ϐigures are shown in Figures 
2a-2d. The presence of the limit is beneϐicial because it allows 
the MNLMPC calculations to attain the Utopia solution, 
validating the analysis of Sridhar [36]. 

Conclusion
Bifurcation analysis and multiobjective nonlinear control 

(MNLMPC) studies were performed on a Glucose-Insulin 
dynamic model.  Hopf bifurcation points and limit points 
were detected. The Hopf bifurcation point, which causes an 
unwanted limit cycle, is eliminated using an activation factor 
involving the tanh function.  The limit points (which cause 
multiple steady-state solutions from a singular point) are very 
beneϐicial because they enable the Multiobjective nonlinear 
model predictive control calculations to converge to the 
Utopia point (the best possible solution) in the models.

Data availability statement: All data used is presented in 
the paper.

Figure 2a: MNLMPC (gv vs. t).

Figure 2b: MNLMPC (iv vs. t).

Figure 2c: MNLMPC (beta vs. t).

Figure 2d: MNLMPC (c1 vs. t).
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